Negation and exhaustification

A brief overview of the exhaustification account of SI

In preparation for L&C Negation Workshop (27.05.2016)

Karoliina Lohiniva, candoc
Department of linguistics, UNIGE
09.05.2016
1. Introduction

- In preparation for Benjamin Spector’s talk on **metalinguistic negation**, we’ll go over the perspective adopted by Spector and colleagues on the derivation of scalar implicatures

2. Negation

- Descriptive negation: truth-conditional
 - “It was not hot on Sunday. It was warm.”
 - “Mary does not have four cats. She has one.”
- Metalinguistic negation: non-truth-conditional (Horn 1985, 1989; Moeschler 2010):
 - “It was not hot on Sunday. It was blazing hot.”
 - “Mary does not have four cats. She has ten.”
2. Negation

- Descriptive negation:
 - “It was not hot on Sunday. It was warm.”
 = “It was less than hot”
 - “Mary does not have four cats. She has one.”
 = “Mary has less than four cats”

- Metalinguistic negation:
 - “It was not hot on Sunday. It was blazing hot.”
 = “It is not enough to say it was hot: it was more than hot”
 - “Mary does not have four cats. She has ten.”
 = “It is not enough to say Mary has four cats: she has ten”
3. Scalar implicature

• Traditional view: Gricean reasoning based mainly on the first submaxim of quantity (Grice 1975, Horn 1972, inter alia)
 • “Make your contribution as informative as is required (for the current purposes of the exchange”
 • If a speaker utters φ, but could equally well have uttered ψ, where ψ is more informative than φ, the hearer can infer that there was a reason for the speaker not to utter ψ
 • It’s not the case that the speaker thinks that ψ
 • If the speaker can be assumed to have an opinion, that is, to think that ψ or to think that not-ψ, then the speaker can be inferred to think that not-ψ
3. Scalar implicature

• Example:
 • \(\phi = \text{Mary ate some apples} \)
 • How do we understand some?
 • At least some: encoded meaning
 • Some but not all: strengthened meaning
3. Scalar implicature

- Example:
 - $\phi = $ Mary ate some apples
 - $\psi = $ Mary ate all apples

- ψ is more informative than ϕ: anytime ψ is true, ϕ will necessarily be true as well, but the opposite does not hold
- We say ψ entails ϕ
3. Scalar implicature

• Example:
 • $\phi = \text{Mary ate some apples}$
 • $\psi = \text{Mary ate all apples}$

• SI:
 • The speaker uttered ϕ
 • The speaker could have uttered the more informative ψ instead but did not
 • Probably the speaker does not believe ψ to be true
 • The strengthened meaning is the conjunction of ϕ with the negation of the more informative alternative ψ:
 • $\phi \land \neg \psi = \text{Mary ate some apples but not all of them}$
 • “Mary ate some apples and in fact she ate all of them”
 • Cancellability is a hallmark of implicatures
3. Scalar implicature

- Example:
 - $\phi = \text{Mary ate some apples}$
 - $\psi = \text{Mary ate all apples}$

- But:
 - $\psi' = \text{Mary ate some but not all of the apples}$
 - ψ' entails ϕ too

- Negating both alternatives would lead to a contradiction
 - Mary ate some of the apples but not all of them but also not some but not all of them
 - This is called the symmetry problem (Kroch 1972, von Fintel and Heim 1997)

- The SI reasoning requires that the set of alternatives is restricted
 - Horn (1972): lexical scales
 - Criteria: monotonicity, complexity…
 - Katzir (2007): structural alternatives
3. Scalar implicature

- In sum: traditionally, scalar implicatures have been treated as conversational implicatures that
 - arise through reasoning about the speaker’s intentions based on a full utterance
 - require two additional assumptions in order not to undergenerate or overgenerate:
 - The opinionatedness assumption
 - Restriction on the set of alternatives
4. A grammatical account of SI

- Chierchia (2004) argues against a globalist view of SI and for a grammatical approach, where SIs are derived compositionally through **silent exhaustification**:
 - The strengthened meaning of $\phi = O(\phi)$, where O is like silent *only*.
 - Exhaustification via O takes the set of alternatives of ϕ and negates all alternatives that are not entailed by ϕ.
 - With amendments to avoid the symmetry problem.
 - Exhaustification does not apply vacuously (if it does not lead to a logically stronger, more informative result).
 - $\phi = I \text{ doubt that Mary or John will come}$.
 - $\pi = I \text{ doubt that Mary and John will come}$.
 - ϕ entails π.
 - Therefore, $O(\phi)$ wrt. π is vacuous; $O(\pi)$ wrt. ϕ is not, however!
 - In general, O is vacuous in when applied to the stronger alternative.
 - The motonicity properties of the alternative determine which alternative entails which.
4. A grammatical account of SI

- **Downward entailing (DE)** or monotone decreasing contexts have the property of licensing subset inferences ≈ reversing the direction of entailment wrt. **upward entailing contexts (UE)**

1. “I ate *spaghetti*” entails “I ate *pasta*”
2. “I ate *pasta*” does not entail “I ate *spaghetti*”
3. “I did **not** eat *pasta*” entails “I did **not** eat *spaghetti*”
4. “I did **not** eat *spaghetti*” does not entail “I did **not** eat *pasta***

- **Negative** declaratives are DE, so the pattern of SIs is reversed wrt. the scalar expression:
 - Mary **or** John will come ≈ **not**(Mary **and** John will come)
 - It is **not** the case that Mary **and** John will come ≈ **not**(It is not the case that Mary **or** John will come = Neither Mary nor John will come)
4. A grammatical account of SI

- Chierchia’s argument is empirical
 - SIs can be embedded: they sometimes need to be derived not based on a full utterance, but a subpart of it
 - The silent exhaustification operator O needs to be inserted locally, so that it applies before another operator
4. A grammatical account of SI

- Hurford’s constraint (HC, Hurford 1974):
 “A sentence that contains a disjunctive phrase of the form S or S’ is infelicitous if S entails S’ or S’ entails S”
 - # “Mary ate an apple or a fruit”

- Scalar expressions violate HC
 - “Mary ate some or all of the apples”
 - “… all …” entails “… some …”

- Local exhaustification solves the problem
 - “… all …” does not entail “… only some …”
 - Does not help in cases where no relevant alternatives are available
5. Negation and SI

- Negation is DE: no SI arises when there are no stronger alternatives to negate.
- However, there are cases where negation in a stronger alternative gives rise to an interpretation that is not compatible with the logical meaning.
 - These examples can also be dealt with by positing that the silent exhaustification operator can be inserted in embedded positions.
 - “Mary did not eat an apple or a pear; she ate both”
 \[= \textbf{not} (\textit{only} (\ldots \textbf{or} \ldots)) = \textit{not} O_{alt}(\text{Mary ate an apple or a pear}) \]
- Other examples:
 - “I don’t think some people will come; I think everyone will”
 \[= \textbf{not} (\textit{only} (\ldots \textbf{some} \ldots)) = \textit{not} O_{alt}(\text{I think some people will come}) \]
 - “It was not hot; it was blazing hot”
 \[= \textbf{not} (\textit{only} (\ldots \textbf{hot} \ldots)) = \textit{not} O_{alt}(\text{It was hot}) \]
- These are also used as examples of metalinguistic negation (Horn 1985, 1989), where negation is used by a speaker who wishes to object to the way an utterance was put.
 - “You cannot say that it was hot because it was more than that”
6. Conclusion

- The grammatical approach to SI might explain some cases of metalinguistic negation simply by positing a difference in scope
 - metalinguistic negation = negation that scopes over the exhaustification operator?
- For other cases, an exhaustification-based explanation seems unsuitable
 - /tɛ'meɪtəʊ/, /tɛ'maɪtəʊ/
 - “That is not my wife… because I have no wife”